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Abstract

Hand hygiene is essential in preventing costly and potentially lethal hospital-
acquired infections. Proposed by the World Health Organization, the Five Moments
of Hand Hygiene is an evidence-based and field-tested categorization designed to
measure and improve clinical hand hygiene. In this paper, we show the effectiveness
of a viewpoint invariant convolutional network for automatically identifying the
five moments of hand hygiene. Using de-identified images from privacy-safe depth
sensors inside patient rooms, we demonstrate the viability of our deep learning
method and provide interpretable visualizations. Our results show that computer
vision can offer high-fidelity monitoring of this paramount clinician behavior.

1 Introduction

Hand hygiene is often the first line of defense in preventing hospital associated infections [1, 2].
A meta-analysis [3] estimated that hospital acquired infections cost the United States close to $10
billion each year. While it is one of the most important steps in the clinical care process, hand hygiene
is notoriously difficult to track [4]. The auditing and observing of hand hygiene compliance, whether
in an outpatient clinic or intensive care unit, requires extra staff and dedicated time.

To help combat hospital acquired infections, the World Health Organization proposed the Five
Moments of Hand Hygiene [4] as a method of categorizing critical hand washing events. Because
these events pose health risks to the patient, clinicians should wash their hands: (i) before touching a
patient, (ii) before a cleaning or aseptic procedure, (iii) after exposure to a patient’s bodily fluids, (iv)
after touching a patient, and (v) after touching a patient’s surroundings or environment [4].

Given the recent success of convolutional networks [5–9], they are uniquely poised to perform a
more comprehensive appraisal of hand hygiene in the hospital setting. In previous work where deep
learning was used in the rating of diabetic retinopathy [10] and dermatologic photos [11], static
images were used as the training and evaluation sets. The act of hand hygiene, is dynamic: visitors
and clinicians enter and interact with patient environments in many ways.

Existing technologies such as radio-frequency identification (RFID) systems are used to track people
in hospitals [12] and are generally cheap and easy to deploy [13]. Despite these benefits, this generally
requires that hospital staff wear special items to register their position during specific events (e.g.,
before entering a room [14, 15]). A more scalable solution to track humans with higher precision, at
finer resolution and in a non-intrusive fashion is needed. Computer vision has been shown to provide
fine-grained activity understanding in hospitals [16]. However, computer vision studies for hand
hygiene are limited. In [17], the authors trained a classifier to detect antibacterial dispenser usage
outside patient rooms. While this is a promising first step, their method does not detect physical
contact with the patient and if used as an alarm system, is prone to many false positives.
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In this work, we demonstrate the effectiveness of a viewpoint invariant convolutional network at
identifying instances of the five moments of hand hygiene. We show how a modern deep network
architecture can be applied to depth-based imaging sensors (e.g., Kinect) to detect when a clinician
physically touches the patient or environment. We evaluate our method on real data collected from
an intensive care unit. Additionally, we provide interpretable 3D visualizations to understand our
model’s spatial reasoning.

2 Method

Data. Seven depth sensors were installed on the ceiling inside patient rooms in an intensive care
unit. Each depth sensor reports 3D point cloud data in the form (x, y, z) where x, y, z are values in
real-world meters with respect to the camera’s coordinate system. Cameras were manually calibrated
and all points were projected onto a shared coordinate system. A total of 20,038 annotated examples
were collected over a three month period. Each annotation contains a multi-class label: touching the
patient, touching the environment, or no action. Table 1 shows dataset statistics.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

# Environment Touch 85 621 928 536 294 0 9 604 4
# Patient Touch 542 2,265 4,626 1,723 1,470 891 0 1,691 0
# Frames 872 7,391 12,196 6,519 3,605 1,059 82 3,225 59

Sensors (Viewpoints) A A-B A-F B C D E F G

Table 1: Specifications of the data subsets used in our experiments. For each dataset we report
the number of annotated environment touch frames, patient touch frames, and total number of frames.
We assign the letters A-G for our 7 sensors. All sets have one sensor each except for Sets 2 and 3
which contain 2 and 6 sensors, respectively. The motivation of multiple subsets is to evaluate our
model’s ability at learning single and multiple viewpoints.

Viewpoint Invariance. Our goal is to train a model capable of classifying the five moments of hand
hygiene in hospitals worldwide. To achieve this goal, our model must generalize across hospitals and
the differing viewpoints it may encounter in different patient rooms. Following the work of [17], we
use a spatial transformer network [18] to help our model generalize across viewpoints.

The first layer of our convolutional network is a spatial transformer. The purpose of the spatial
transformer is to project the input point cloud onto a viewpoint invariant feature space. Our model
internally predicts two-dimensional1 transformation parameters θ, which are needed to transform the
input. This produces the affine transformation matrix:

Aθ =

[
θ1 θ2 θ3
θ4 θ5 θ6

]
=

[
sx ϕx tx
ϕy sy ty

]
. (1)

This particular transformation allows for cropping or translation via tx, ty, scaling via sx, sy and
rotation or shearing via ϕx, ϕy . We use a bilinear sampling kernel, which produces the output V :

V ci =

H∑
n

W∑
m

Xc
nm max(0, 1− |xsi −m|) max(0, 1− |ysi − n|) (2)

where X is the input point cloud rendered as a 2D image, (xsi , y
s
i ) are source coordinates in the input

X that define the sample points, and where the superscript c denotes the channel index. The output
(and now invariant) feature map V is then fed to a densely connected convolutional network.

Classification Network. Given the recent success of skip connections [8] in convolutional neural
networks, we use a densely connected convolutional neural architecture [7] (DenseNet) to perform
classification of the five moments activities. The input to the DenseNet is the viewpoint invariant
feature map V from the spatial transformer network.

1Although learned 3D transformation parameters have been proposed [18–20], we opt for a two-dimensional
transformation due to its fast runtime performance, mathematical and implementation simplicity.
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Figure 1: Sensitivity versus specificity for different experiments. Each subfigure (a)-(h) describes
a different experiment, run on validation sets for sets 1 through 8, respectively. Dashed black lines
indicate the patient-touch classifier and blue solid lines indicate the environment-touch classifier.
Numeric values in the bottom left of each plot denote area under the curve. Subfigures (f) and (g)
only have one experiment because the dataset contains zero examples a contact task (see Table 1).

Physical Contact With STN Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Patient No 93.1 95.1 94.1 93.9 95.8 89.6 — 95.4 —
Yes 97.7 93.8 92.4 95.8 98.6 93.9 — 97.7 —

Environmental No 93.7 93.7 93.4 92.5 94.6 — 93.8 90.4 91.7
Yes 95.4 91.8 94.1 93.0 94.7 — 93.8 92.2 91.7

Table 2: Accuracy with and without the spatial transformer network. The patient and environ-
mental touching classifiers were evaluated on individual and combined sensor views (see Table 1).
STN denotes the spatial transformer network. A dash denotes datasets with zero positive examples.

Optimization Objective. Our dataset contains a large number of negative examples (70%) where
there is no patient contact nor environmental contact. Class-balancing addresses this problem: the
ratio of negative to positive examples R is fixed such that training and testing R are equivalent.
However, this approach discards many negative examples that could be useful signals for learning a
more robust model (e.g., hard negatives). An alternative approach which avoids discarding examples
is to weight positives and negatives such that the loss weights are inversely proportional to their
frequency in the training set [21]. Instead, we use:

L(pt) = −(1− pt)γ log pt where pt =

{
p, if y = 1

1− p, otherwise
(3)

where p is the post-softmax value for any one class prediction and γ scales the weighting of very
confident predictions. This loss function is known as the Focal Loss [22]. It dynamically adjusts the
loss weighting to give more weight to hard negatives during the entire training period.

3 Experiments & Discussion

Figure 1 shows the sensitivity versus specificity of our method for classifying patient contact and
environmental contact. When training one model per viewpoint, our model classifies patient and
environment touching well. Patient contact classification performs slightly better than environmental
contact classification. This is potentially due to the fact that clinicians are generally in fixed positions
when touching the patient (e.g. hovering over the bed), while the locations and body poses of
clinicians during environmental contact can be highly variable. When trained and evaluated on all
sensor viewpoints (set 3), our model is nearly equally performant.
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Figure 2: (left) Attention map over the physical space. The point cloud depicts a scene captured
from our depth sensor. To assist the reader, black lines were drawn to denote the geometry of the
patient’s room (including the bed) and the red lines outline the clinician. Additionally, points higher
in the physical space (i.e., toward the ceiling) have a lighter blue-green color; this is not necessarily
indicative of importance. Red points indicate spatial regions containing high signal for discerning
physical contact with a patient. The model learns to focus on the the contact point between the person
and the patient bed when classifying patient touch. (right) Importance magnitudes collapsed onto
a single spatial dimension. Subfigures (a)-(c) show histograms of importance values for a single
axis. The axis is denoted by the red dashed arrow in the three-axis diagram.

Viewpoint Invariance. We compare the performance of training one model per viewpoint compared
to training a single model for all viewpoints. To measure this, we compute a weighted accuracy
over all viewpoint models using dataset sizes. Training separate patient contact classifiers for each
sensor achieves a weighted accuracy of 96.9%, whereas the single model variant achieves 94.1%. For
classifying environmental contact, separate models per viewpoint achieves 93.1% while our single
model achieves 94.1%. This demonstrates the viewpoint invariance of our model: training a single
model on multiple views is competitive with per-sensor models. There are many ways for a clinician
to come in contact with the environment. It is likely that our model is able to leverage the diverse
environmental contact examples from other rooms and viewpoints to improve performance. However,
contact with a patient is much less variable. A clinician generally hovers over the bed when touching
the patient. This benefits models optimized for a single viewpoint. Table 2 shows the results of our
model with and without a spatial transformer module on different subsets. The results show that our
model performs better overall with the spatial transformer network.

Spatial Attention. To better understand the model’s predictions, we performed an occlusion mask
analysis [23] on a model trained on predicting physical contact with the patient. This is performed
by occluding (i.e., zero-padding) the input with variable sized windows and monitoring the model’s
confidence (i.e., post-softmax result). This process is repeated across different regions of the point
cloud tens of thousands of times. The result is shown in Figure 2. Red points indicate input regions
important for correctly classifying the scene as contact being made with the patient. The model
correctly localizes the clinician in the room and assigns a high importance to the clinician since he or
she is leaning over the bed with his or her arm extended.

4 Conclusion

In this paper, we showed the effectiveness of a viewpoint invariant convolutional network at auto-
matically identifying instances of the five moments of hand hygiene. We collected point cloud data
from depth sensors installed in an intensive care unit. When evaluated with a spatial transformer
module, our model is able to perform well given multiple sensor viewpoints across the hospital unit.
We presented intuitive and interpretable 3D visualizations of our model’s predictions which can be
used to educate and improve clinician behavior. This work shows that computer vision can offer
automatic and high-fidelity monitoring of the five moments of hand hygiene.
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